Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation.

نویسندگان

  • V Anbazhagan
  • J Qu
  • J H Kleinschmidt
  • D Marsh
چکیده

OmpG is an intermediate size, monomeric, outer membrane protein from Escherichia coli, with n beta = 14 beta-strands. It has a large pore that is amenable to modification by protein engineering. The stoichiometry ( N b = 20) and selectivity ( K r = 0.7-1.2) of lipid-protein interaction with OmpG incorporated in dimyristoyl phosphatidylcholine bilayer membranes was determined with various 14-position spin-labeled lipids by using EPR spectroscopy. The limited selectivity for different lipid species is consistent with the disposition of charged residues in the protein. The conformation and orientation (beta-strand tilt and beta-barrel order parameters) of OmpG in disaturated phosphatidylcholines of odd and even chain lengths from C(12:0) to C(17:0) was determined from polarized infrared spectroscopy of the amide I and amide II bands. A discontinuity in the protein orientation (deduced from the beta-barrel order parameters) is observed at the point of hydrophobic matching of the protein with lipid chain length. Compared with smaller (OmpA; n beta = 8) and larger (FhuA; n beta = 22) monomeric E. coli outer membrane proteins, the stoichiometry of motionally restricted lipids increases linearly with the number of beta-strands, the tilt (beta approximately 44 degrees ) of the beta-strands is comparable for the three proteins, and the order parameter of the beta-barrel increases regularly with n beta. These systematic features of the integration of monomeric beta-barrel proteins in lipid membranes could be useful for characterizing outer membrane proteins of unknown structure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Protein-lipid interactions with Fusobacterium nucleatum major outer membrane protein FomA: spin-label EPR and polarized infrared spectroscopy.

FomA, the major outer membrane protein of Fusobacterium nucleatum, was expressed and purified in Escherichia coli and reconstituted from detergent in bilayer membranes of phosphatidylcholines with chain lengths from C(12:0) to C(17:0). The conformation and orientation of membrane-incorporated FomA were determined from polarized, attenuated total reflection, infrared (IR) spectroscopy, and lipid...

متن کامل

Structure of the monomeric outer-membrane porin OmpG in the open and closed conformation.

OmpG, a monomeric pore-forming protein from Escherichia coli outer membranes, was refolded from inclusion bodies and crystallized in two different conformations. The OmpG channel is a 14-stranded beta-barrel, with short periplasmic turns and seven extracellular loops. Crystals grown at neutral pH show the channel in the open state at 2.3 A resolution. In the 2.7 A structure of crystals grown at...

متن کامل

Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer.

Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. T...

متن کامل

Characterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane

Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...

متن کامل

Secondary and tertiary structure formation of the beta-barrel membrane protein OmpA is synchronized and depends on membrane thickness.

The mechanism of membrane insertion and folding of a beta-barrel membrane protein has been studied using the outer membrane protein A (OmpA) as an example. OmpA forms an eight-stranded beta-barrel that functions as a structural protein and perhaps as an ion channel in the outer membrane of Escherichia coli. OmpA folds spontaneously from a urea-denatured state into lipid bilayers of small unilam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 47 23  شماره 

صفحات  -

تاریخ انتشار 2008